Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → xor(x, true)
implies(x, y) → xor(and(x, y), xor(x, true))
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → xor(x, true)
implies(x, y) → xor(and(x, y), xor(x, true))
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
not(x) → xor(x, true)
implies(x, y) → xor(and(x, y), xor(x, true))
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
not(x) → xor(x, true)
or(x, y) → xor(and(x, y), xor(x, y))
=(x, y) → xor(x, xor(y, true))
Used ordering:
Polynomial interpretation [25]:
POL(=(x1, x2)) = 2 + x1 + x2
POL(and(x1, x2)) = 1 + x1 + x2
POL(implies(x1, x2)) = 2 + 2·x1 + 2·x2
POL(not(x1)) = 2 + 2·x1
POL(or(x1, x2)) = 2 + 2·x1 + 2·x2
POL(true) = 1
POL(xor(x1, x2)) = x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
implies(x, y) → xor(and(x, y), xor(x, true))
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
implies(x, y) → xor(and(x, y), xor(x, true))
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
implies(x, y) → xor(and(x, y), xor(x, true))
Used ordering:
Polynomial interpretation [25]:
POL(and(x1, x2)) = x1 + x2
POL(implies(x1, x2)) = 1 + 2·x1 + 2·x2
POL(true) = 0
POL(xor(x1, x2)) = x1 + x2
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RisEmptyProof
Q restricted rewrite system:
R is empty.
Q is empty.
The TRS R is empty. Hence, termination is trivially proven.